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This paper 1s a presentation of several
related topics in non-desarguesian projective
geome try.

Section (I) will present the definitions,
axioms, and notation which will be used in the
paper. In particulér, Desargués' condition is
introduced. |

In section (II), collineations (automorphisms
of projective planes) and some of their most !
important pfOperties ere introduced. Baer's.
notion of (p,L)-transitivity is explained, and
it is shown to be equivalent to a ﬁarticular
case of Desargues' conditlion.

In section (III), the projective plane is
coordinatized over a ternary field, following
M.Hall's method. The algebraic voroperties of
the ternary field are shown to correspond to
geometric properties of the plans.

| In section (IV), all projective planes are
classified in the Lenz-Barlottl types. The class-
ification, in some sense, measures "how desarguesian"
the various types of planes are.

In section (V), some finite non-desarguesian
planes are constructed, in particular the Hughes

planes, which do not have any (p,L)-transitivities.



(I) INTRODUCTION
In this section, we will introduce the
basic concepts we will be working with. If the
reader is not familiar with them, a good pre-
sentation can be found in H pp. 1-8.
Definition : A projective plane is a set of

points, of which certain distinguished subsets

are called lines, satisfying the followling axioms @
21;4Any,two distinct points belong to one and

only one line,

PII. Any two distinct lines have exactly one point
in common.

PIII. There exist four distinct points, no three
of which are collinear. (See A p.5, E pe346)

Notation : In this paper, caritals will denote
lines. Lower-case letters will denote points.

7 will denote a projective vlane. ab will denote
the line through two distinet points a and b.
AB.will denote the point where two distinct
lines A and B meet. For example, we write

(qr)A=x (See fig. 1)

Consider the line of a plane m. Call them
"points"., Call the points "lines". Say that a
"point" belongs to a "line" if and only if the
corresponding line contains the corresponding
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point. The set obtained thus is & projective
plane w#* called the dual of . 7 and ¥ can be
shown to be isomorphic. It follows that any true
statement about 7 has a dual statement (obtained
by interchanging the words "point" and "line",
and interchanging € and =) which is salso true.
This is known as the principle of duality. (See
A pp.10-13, E p.347). This principle leads to the
notation "pIL" for "p€L", where "I" stands for
"incident to". Incidence being a symmetrical
relation, this notation is more accurate. However

we willl use p€L which is more familiar.

Theorem 1 : There are at least three lines through
each polnt. (for proof, see E pp.346-347)
The dﬁal of this theorem 1s :

Theorem 1# t There are at least three points on

each line.

In the following, we will not write down
explicitely the duals of theorems. Theorems 1
and 1* will be used very often, without explicit

reference to them.

Definition : The points p, q, r, together with

the lines pq, 4r, and pr, are called a triangle
par, if they are not collinear. Two triangles

rdr and p'q'r!' are said to be central if there




is a point ¢ (the center) such that c€pp!,
c€qq', and c€rr!. They are said to be axial
1f there 1s a line A (the axis) such that
(pa) (p'q')€A, (pr)(p'r?)€A, and (qr)(q'r')EA.
(See fig. 1).

Desargues' conditlon : Every central couple

of triangles is axial.
A plane 1is called desarguesian if it satis-
fies Desargues! condition.

Desargues! theorem : A projective plane that can

be embedded in a projective 3-space is desarguesian.
(For definition of projective 3-svace and proof
of theorem see H pp.13-16).,

If a plane cannot be embedded in a projec~
tive 3-space, Desargues' condition does not hold.
In this paper we will discuss the geomtric and
algebralc conditions that make a plane desarguesian.
We will also study some general properties that

are charcteristic of non-desarguesian planes.




(I1) COLLINEATIONS AND TRANSITIVITY

In this section, we will prove several
basic theorems about central collineations,
a certain kind of automorphisms of projective
planes, We will introduce Baer's notion of
(p,L)-transitivity, discovered in 1942, which
is extremely important in the theory of projec-
tive planes.

Definition : A collineation is an incidence-pre-

serving bijection that maps points of m to points
of ", and lines to lines.

Let A be the set of all collineations of
7. It constitutes a group (Operation : composition
of maps. Identity element : the identity map,
noted 1). Collineations, except i, will be de-
noted by small greek letters. A point ¢ such
that a(L)=L whenever c¢€L is called the center
of a. Dually, a line A such that a(p)=p whenever
PE€A 1s called the axis of a. (See D pp.118-119)

Theorem 2 ¢ A collineation a€A has a center

if and only if it has an axis. If a#i, the center
and axls are uniqgue.

Proof : Consider a#i. Assume a has a center

c. We must show ¢ a has an axis. Consider two
distinct lines L and L' through c. Take pEL

and p'€L'. If p and p' are fixed by a, then




pp! is an axls. Indeed take any q€pp'. We have :
al(q)ealpp!)=a(pla(p')=pp'.
Also a(q)€a(cq)=cq (since a has cenbter c¢}. So

a(q)=(cq) (ppt)=qg, and q 1s fixed. (See fig. 2)
If at least one of p,p! 1s not fixed by gfzggnsider

(pp') (a(pla(pt))=f.

f 1s fixed, since its image must be on a(pp!'):

which 1s a(p)a(p') and also on cf. If all g€ef

are fixed, cf is the axis and we're done. Other-

wise, consider g€cf such that a(q)#q. Consider
f£1=(pq) (a(plalq)).

f' is fixed. Reasoning as above, we conclude

that £f' is an axis. (See fig. F).

The proof that if there is an axis, then
there is a center, is the dual of the above proof.
We sti1ll have to show that the center and axis
are unique 1if a#i. Let A and A' be two distinct
axes. Teke pZA, p@A', p#c. Draw a line L through
p such that I¥ecp and L#p(AA')Then LA and LA! are
fixed, so L is an axis and p 1s fixed. Since p
was arbitrary, we must have a=1, & contradiction.
(See fig. 4). We conclude the axis is unique.
Dually, the center is unique. This completes

the proof of theorem 2.

We will be almost exclusively interested

in central collineations, i.e. the ones that






have a center and axis. The followlng set is
a subgroup of A :

Alc,A)={a€A|a has center ¢ and axis A}
This follows immediately fromthe uniqueness
of the center and axlis. Indeed, if a and B
€A(c,A), then clearly Boa has center ¢ and axis

A, (See A p.55).

A remarkable and important fact about
central collineations is that they are deter-
mined uniquely by their action on any one non-
‘fixed point. More precisely :

Theorem 3 : Let c€mw, A€m#, Let x,yEm be such that

x#c, y#c, xFA, y#A and cx=cy. Then there is at

most one a€A(c,A) such that a(x)=y. (See D p.22).

Proof : If there exists such an a, let us show

that for a given p, a(p) is uniquely determined.

If pgxy, draw the line px. Let (px)A=a. Then
alax)=a(a)a(x)=ay, so a(p)=(ay) (ep).

If p'€xy, use a similar construction, with

some pfxy and a(p) playing the part of x and

y respectively. (See fig. 5). This proves theorem

3 and gives us a method to construct a(p) that

will be very useful in future proofs.

We are now ready to define (c,A)-transitivity.

This concept, due to Baer, is the key to sections
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(III) and (IV)} of this paper.
Definition : w is (c,A)-transitive if A contains

2ll possible collineatlons with center c¢ and axis
A, 1i.6. if the "at most" in the statement of
theorem 3 can be replaced by "exactly".

This concept is closely related to special case
of Desargues' condition. We sav that w is (c,A)-
desarguesian if every couple of triangles pqr,
r!'q'r! with center ¢ and such that

(pq) (p'q'}€A and (pr)(p'r?)eA
is axial.(See fig. 1l}.

We say that m is (L,A)-trensitive if and only
if it 1s (c,A)=-transitive for all c€L. Dually,
7 is (c,p)~transitive if and only if w is (c,A)-
transitive for all A such that pfA. (L,A)- and
(c,p)-desarguésian are defined in a similar

fashion.

Theorem 4 st is (c,A)-transitive if and only if
n is (¢,A)-desarguesian.

(The following proof is based on A pr. 59-62).
Lerma 1 : Let a€A(c,A). If pgr is a triangle
such that cf¥pq, cfqr, cfpr, and pZA, qFA, rfA,
then the triangles pgr and a(pla(q)a(r) have
center ¢ and axis A, T e a

Proof of lemma : Since ¢ 1s the center of a,

we have c€pa(p), c€qa(q) and c€ra(r). Since




all points ofAare fixed by a, we have
a((pr)a)=a(pr)a(a)=(a{p)a(r))A=(pr)a, So :
(pr) (a(p)a(r))€A. Similarly, (pq)(alq)a(r))eal,
and (qr)(a(q)a(r))€A. We conclude that the
triangles have center ¢ and axls A, and lemma
1 is proved. (See fig. 6).

Proof of theorem : Assume m is (c,A)-transitive.

Consider two triangles pqr and p'q'rt', with
center ¢, such that z=(pq)(p'q'}€A, and
y=(pr}{p'r')€A. We rmust prove that x=(qr)(q'r*)€A.
(See fig. 1). Consider a€A(c,A) such that al(p)=p!'.
Then @
a(q)=a((zp) (eq))=(a(z)a(p)) (alcq))=(zp') (cq)=q?*.
Similarly, a(r)=r'. We conclude, by the lemma,
that the triangles are axial, end 7 is (c,A)-
desarguesians . .

Now assume that m 1s (c,A)-desarguesian.
Consider any x, y, such that x#c, y¥c, x#A,
yZA, and c€xy. We must construct aeA(c,A) such
that a(x)=y. We can do it as in the proof of
theorem 3. But we do not know that the a obtal-
ned thus is a collineation. To prove it is,
we need the following facts :
2) Well-definition : no matter which pgxy is
used to define a(p') for p'€xy, we get the same
result,

b) Bijection : this is obvious from the construc-



tion of a, and (a).

¢) a takes collinear poihts into collinear pointse
To prove (a) and (¢), we need to know that

a takes collinear points of m-xy into collinear

points. Consider three collinear points of w-xy,

P, 4, and r.Construct alp}, alq), al(r), as in

the proof of theorem’3. We must show they are

collinear, Consider the triangles pgx and a(p)a(q)y.

They have center c. By construction, (fig. 7),

we have (gx) (a(q)y)6A and (px) (a(p)y)€A. Since

the plane is (c,A)-desarguesian, we conclude

that (pq) (a(p)alq))€A. Similarly, we can show

that (qr) (a(g)a(r))€A. But pg=qr, so a(plalq)

and a(q)a(r) meet at (pg)A=(a(plalq))A. So

a(p), a(q) and a(r) are collinear.

Proof ofic{g) "¢ ‘Consider any p, 4@ in w-xy. Construct

a(p) and a(q) &s in the proof of theorem 3.
Take p'€xy. Draw the lines pp'! and qp'. They
intersect A respectlively at & and b. Define
a(p')=(aa(p)) (xy) and B(p!)=(ba(q)) (xy). We
must show that a(p')=pf(p'). This can be done
with no difficulty by using the (c,A)-desar-
gueslian property on the triangles pqp' and
a(pla(q)a(p?). (See fig. 8).

Proof of (¢) : We have already shown that a

takes collinear points of T-xy to collinear

points. Clearly a(xy)=xy. We are left with the
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case of three points, one of which is on xy.
The result follows ilmmedliately from the well-
definition of a. Indeéd take three collinear
points p, q, r, with pgxy, r€xy. Construct
a{p) end a(q). Then construct a(r) using p

and then using q. The well definition of a im-

plies a(p), al(q), a(r) are collinear. (See fig. 9).

This ends the proof of theorem 4.

This theorem 1s extremely important, be=-
cause it tells us what 1t takes for a plane to
be desarguesian. A plane 1is desargueslan if
and only if it has all possible central colli-

neations.

We will conclude this section by proving
one more result, that will be useful in sections
(I1I), (IV) and (V).
Theorem 5 : If 7 is (c,A)-transitive, and a€A,
then m is (a(e),a(A))-transitive. (See D p. 123).,
This result follows readily from the lemma :
Lemma 2 @ aoA(c,A)oa'l=A(a(c),a(A)).
Proof : Consider PEA(c,A). What are the fixed
points of aoBoa'l ?
zopoa~ (a(a))=a(B(a))=a(a) for all aGA.
So a(A) 1s the axis. Duglly, a(c) 1is the center,
and we conclude that aoBoa-leA(a(c),a(A)).

We can show inclusion in the other direction
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by using the same reasoning. This ends the proof

of lemma 2.

1%
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(III) COORDINATES AND TERNARY FIELD

In this section, we will bridge the gap
between algebra and projective geometry. This
is done by introducing coordinates in the pro-
Jective plane, following M,Hall's approach.
(We will follow E pp.353-356 ; see also A pp.
44-51 and D pp. 127-128). Choose four points,
no three of which are collinear. Call them
0, €, x and y. Assign the coordinates (Q,0)
to o, (1,1) to e, (1) to (oe)(xy). To other
points of oe assign coordinates (b,b), taking
different symbols b for different points. For
a point p@Zxy, let (xp) (oe)=(b,b) and (yp)(oe)=(a,a).
Then assign coordinates (a,b) to p. This rule
reassigns the same coordinates to points of oe,
Assign the coordinate (m) to the point = , ~ 7.
((Qy,Q) (1,m)) (xy). And finally assign the coor-
dinate 6o0) to y. (See fig. 10).

Let us define equations for the lines of
T, except xy. A line through y other than xy
will have the property that all its points
(x,3) other than y have the same x~coordinate,
say x=c. We take this equality for the equation
of the line. Any line not through y will inter-
sect xy at some point (m) and oy at some point
(0,b) e If gq=(x,y) is a point on this line we

define a ternary operation on the coordinate
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system : y=x.mob, and take this as the equation
of the line. In particular we define :

The coordinate system together with the
ternary operation is called a ternary field
(or planar ternary ring). It will be denoted
by ¢. The ternary operation satisfies the follo-
wing laws :

a) O.moc=a.0oc=e

¢) Given a, m, c, there exlsts exactly one z

such that a.moz=c.

d) Given m#m', b, b'!', there exists exactly

one x<such that x.mob=x.m'ob!,

o) Given a¥a', ¢, ¢', there exists exactly

one pair m, b such that a.mob=¢ and al.mob=c'.,

Proof : (a) and (b) are immediate. (c) says

that the line joining (m) and (a,c) intersects

oy in a unique point (0,z), (Axiom PIT). (d)

and (e} follow similarly from the axioms.
(a)yesey () imply that £ is a loop with

respect to addition. This loop will be denoted

by et £-{0} 1s a loop with respect to multi-

plication, which will be denoted by £°.

The following theorem explains the rela-
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tionship between ™ and &.

Theorem 6 : Let ¢ be determined by o, e, x, ¥,
and £' be determined by o', e!, x!' and y',.
Then £ and ¢' are isomorphic if and only if
there exists a€A such that a(o)=o', a(e)=e!?,
a(x}=x' and a(y)=y!.

Qutline of proof : (For full proof, see A p.52).

Assume the existence of a., Define a map $:o—>8!
as follows :($(a))=a((a)), where (a) on the right-
hand side is a coordinate with respect to £,
and the left-hand side 1s a coordinate with
respect to ¢'. Thls 1s possible because a is
a bijection between xy and x'y'. Verify $ is
an isomorphism.
Conversely, assume $ 1s an isomorphism
between £ and £'., Define a such that 2 -,
a((2,b))=($(a),$(b)), al(m))=($m)), aly)=y'.
Verify thet a is a collineation. (Coordinates
on the left-hand side of the equalitles are
wilth respeet to £, on the right, to £'.) End
of the outline of the proof of theorem 6.

Given a ternary field £.wlth the propertiles
(a)geeey (e} we can construct a projective plane
with points (a,b), (m) and (o), vnere a, b,
and m range over the elements of ¢., Indeed’ =

let x=(0)and y=(00). The line xy contains y
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and all the points (m) and no others. For each
c€¢, we havea'line x=¢ conslsting of the point:
y, and tHe points (c,y) where y ranges over

all the elements of £, The point (m) and the
points (x,x.mob) are the points of the line
J=Xx.mob, for each palr m, b. The properties
(2)peeey (@) can be used to prove that the three
axioms for projective planes hold. Specifically :
BIII. x, vy, (0,0) and (1,1) are such that no
three of them are collinear.

For the other two axioms numerous cases
mist be considered. We will conslder a typical
one for each axiom.

PI. : (m) eand (a,c) belong to the line y=x.moz
where z 13 the unique element of £ such that
a.moz=¢, Moreover, (m)g@[x=B] for all b, and
(a,c)¥xy. We conclude the two points (m) and
(a,6) belong to a unique line. The other cases
are ¢ (m),(n) 3 (2,¢), (b,d) 3 (0), (m) ;

(o), (a,¢). They do not present any difficulty.
PIT. Conslider two distinet lines y=x.mob and
y=x.mob'. They have the point (m) in common,

but no other point. Indeed, (m) is the only point
with a single coordinate on either of these llnes.
Moreover, if they both contained (a,c), we

(¢)o The other cases are : X=¢, x=c¢' ; y=x.mob,
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Y=x.m'ob! ; y=x.mob, Xy j X=¢, Xy ; Y=X.mob,
x=c. They do not present any difficulty.
This ends the proof that the above cons-
truction ylelds a projective plane. We will
refer to 1t in section (V), where it will be used

to construct some finlte non-desarguesian planes.

It follows from the above that there 1is
a canonical correspondence between projective
planes and ternary fields. We wlll now show
how further algebraic propertles of the ternary
field correspond to various transitivitiles in
the plane. Here are some such properties (see
D pp. 129-130)
I : a.mob=am+b (£ 1s sald to be linear).

: addition is associative (&' is a group).

T
IIT : multiplication is assoclative (£° is a

group) .
IV : (x+y)z=xz+yz (right distributivity).
V ¢ x(y+z)=xy+xz (left distributivity).
VI : x°y=x(xy) and xy —(ﬂ
VII : xx'=1l => x(x'y)=y (left inversive property).

-
H
-1 . . B

VIIT : gyt=Ll===> (xgdy'=x- = &~ 2o
(right inversive property).
IX : multiplication is commutative.
Note that I, II, and IV (or I, II and
V) imply that addition is commtative. (For



proof, see A p.69)
Definition : A right (resp. left) quasifield

(or Veblen-Wedderburn system) is a ternary field
satisfying I, II, and IV (resp. V). A semifield
iIs a ternary fleld satisfying I, II, IV and V.
A right (resp. leftiﬁﬁggggield is a ternary
field satisfying I, II, III, and IV (resp. V).
An alternative fleld 1s a ternary field satis-
fying I, 1I, 1V, V, and VI,

Note that a ternary field satisfying I,...,

V is a (not necessarily commutative) field.

We now have all the terminology we need
to state the major theorem of thls section :
Theorem 7 : (a) w is (y,xy)-transitive if and
only if £ satisfies I and II. In this case,
Aly,xy) is isomorphic to et
b) v is (x,0y)-transitive if and only if ¢
satisfies I and III. In this case, A(x,oy)
is isomorphic to £°.

e) 7 is (xy,xy)-transitive if and only if ¢

1s a right quasifield.

d) 7 is (y,y)-transitive if and only if ¢ is

a left quasifield.

e) ™ 1s (x,y)-transitive i1f and only if ¢ is

a right planar nearfield.

f) m is (xy, xy)-transitive and (oy,oy)-transitive



if and only if ¢ satisfies I, II, IV, V, and VII.
g) 7 is (x,oy)- and (y,0e)=-transitive if and only
if ¢ 18 a (not necessarily commtative )field.
(See D p.130).
Proof : Gingerich seems to have discovered this
theorem in 1945, See G pp. 31-58 for a complete
proof. Here, we will prove (a), following E pp.
360-362 (See also A pp. 65-66). The other results
can be proved in a similar fashion. However,
(e) follows easily from (b) and (c), and (g)
£ollbws emsily from (d) and (e).

Suppose that w is (y,xy)-transitive. We
must show ¢ satisfies I and II. Take points
(m), (0,b). Take p€ly=x.mobl. Say p=(a,2.mob)s
We have (yp)((m)o)=u=(a,am). Also :
(ux) ((1)o)=w=(am,am), and (yw) ((m) (0,b))=r=(am,am+b}.
(See fige 12).

Now rx has equatlion y=am+b, so 1f we can
Take a€A(y,xy) such that a(o)=(0,b). Then the
image of u=(yu)((m}o) is :

a(u)=-¢((m)o)atyu)=({(0,b) (m)) (yu)=p.
Similarly, a(w)=r. And we know that a(x)=x.
Since ufwx, 1t follows that p€rx. This completes
the proof that £ satisfies I.

What is the image of a point (a,c) ? Well :

(a,c)=[x=ally=c], and a([x=al)=[x=a]. We must



determine a(ly=c]). (See fig 13)}. We have
al{(c,c))=(c,c+b) since a((l)o)=(0,b) (1), It
follows that a(l[y=c])=[y=c+b]l. So

a((a,e))=(a,c+b).
Now if BEA(y,xy) 1is such that B(o)=(0,d), we
have B((u,v))=(u,v+d). And for Poa we find :

(Boa) (0)=p((0,b))=(0,b+d}s So :

(Boa) ((a,c))=(a,c+(b+d)). But :
Bla((a,c)))=p((a,c+b))=(a, (c¥b)+d) . Hence

c+(p+@)=(c+b}+d, and since b, ¢, d, were
arbitrary, addition 1s associative, and we have
proved that ¢ satisfies II.

Conversely, suppose ¢ satisfies I and II.
For any b€¢, define a map a such that a(y)=y,
a((m))=(m), and a((a,c))=(a,c+b). Let us show
a is a collineation. Clearly, a(xy)=xy, and
a([x=al)=[x=al]. If (g,c)€[y=zm+t], then c=amtt,
so c#b=(am+t)+b=am+ (t+b), which implies that
(a,e+b)e€[y=xm+ (t+b)]. This verifies that the
image of any point of y=xzm+t is on y=zm+(t+b).
So a takes lines to lines in all cases, and
therefore is a collineation. But a€A(y,xy)
and a(o}=(0,b}, Since b was arbitrary, we con-
clude that 7 1s (y,xy)-transitive.

It remains to show that A(y,xy) is iso-
morphic to 8+. If we assocliate to each a the

mumber b such that a(o)=(0,b), 1t is easy to
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show we have an isomorphism. This ends the proof

of theorem %(a).

Theorem 7 is rather important because it
shows the 1intimate connectlon between algebre
and projective geometry. Not only are geometric
facts proved using purely algebraic tools, but
also algebraic properties are established through
geometric arguments. Notlice that as ¢ gets more
and more of the properties of a field, ™ gets
closer and closer to a desarguesian plane. This
process culminates in theorem 8 below.

Definition : If a plane is (L,L)-transitive

for all L, it is called a Moufang plane (after
Ruth Moufang who first studied these in 1933).
Theorem 8 : (a) w is a Moufang plane if and

only if ¢ 1s an alternative fileld.

b) 7 is desarguesian if and only if ¢ is a (not
necessarily commtative) field. (See D p.130).
Proof : (a) The proof of this result requires

an algebraic arsenal that we will not even attempt
to muster (See E pe. 372). However, we will prove
the weaker result that a Moufang plane dorresponds
to an alternative fleld that satisfies VII and VIII.
(We will follow E pp. 366-371).

Lemma 3 ¢ If w 1s (A,A)- and (B,B)-transitive, then
it is (L,L)-transitive for all L such that ABEL.



Proof of lemma : Consider c€L, ¢#AB. Draw a

line C through c, C#L. Then there exists afA(AC,A)

such that a(BC)=c. It follows that a(B)=L. Since
n is (BC,R)-transitive, by theorem 5 it is (c,L)-
transitive. This 1& true for any L such that
ABEI, and any c€L, so the lemma is proved. (See
fige 14), It i1s the use of this lemma in the
proof of theorem 8(a) that accounts for the

fact that i1t is much more powerful than any one
of the results in theorem 7.

Corollary : If w is (4,A)-, (B,B)- and (C,C)-
transiti ve, where A, B, C are not concurrent,
then 7 is a Moufang plane.

Proof of corollary : Consider any line L. We

must show (L,L)~trensitlivity. Draw (AB}(LC}=D.
By the lemma, m is (D,D}-transitive. By the lemma
7 is (L,L)~transitive. (See fige. 15). End of
proof of corollary. Now let us go hack to the
proof of theorem 8 (al).

Assume ¢ satisfles I, II, IV, V, VI, VII,
and VIII. Then by theorem 7 (f) and lemma 3,
7w is ([x=c],[x=c])-transitive for all c€¢, as
well as (xy,xy)-transitive. Let us find a colli-
neation that moves y. a defined as follows wiIl
do the job.: a((a,b))=(b,a), a((g))=(m'l) for
m#0, and a(x)=y, a(yi=x. a is a collineation

since a([z=el)=[y=el, of[y=xm+b])=[y=xn T sbm™']






for m#0, and a(xy)=xy. We have a8X(1l),o0e).
Let us show m is (oe, oe)=-transitive. Pick any
point (a,a2). There exists BEA(o,o0y) such that
8((1))=(a,8). By theorem 5, w is ((a,a),08)~
transitive. (See fig. 16). But (a,a) was arbitra-
ry, so 7 is (oe, oe)-transitive, and by the
preceding corollary w is a Moufang plane.
Now assume that w is a Moufang plane.
By theorem 7 (f), £ must satisfy I, II, IV,
V and VII. Let us show it satisfies VIII. Con-
sider afA(o,o0x) such that a(y)=(0,=1). Then
it is easy to show that a([g;g])=[1#3§_1ﬂl].
It follows that a((l,1-ab))={(zb)~%, (ap)~1-1),
and therefore a([xF;-EQ])=[1F(32)-1-13- It
follows also that a((_g,}_-_g};))=(p'1,_‘9'15'1-_3;),
and therefore a([xﬁl-§2])=[1§2';g'11;]. Compa-
ring the images of y=l-ab, we conclude :
(22)-1?971§f1. And since by VII, §'1=g(§f;p-l),

we £1nd ¢ b=(b"1)"I=(a(a"lp~1))"1=(a 1 1) "1a"2
=(T_D_§_)2.lo

So ¢ satisfies VIII. Since VI 1is an algebraic
consequence of the other laws that ¢ satisfies,
(see E ppe 369-370), this ends the proof of

the wesk version of theorem 8 (a).

Proof of (b) : (We will follow A, P.77). Assume

first that m is desarguesian. By theorem 7 (d),
(e), we coneclude that £ satisfies I,eee,Ve
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Now assume that one of w!'s coordinate systems
satisfies I,.e0,Ve Then by a well-known result
about planes that can be coordinatized by a -
fleld, there exists a collineation taking o,

e, X, ¥ to any other four points (no three of
which are collinear). (See A p. 42, H p.93).
By theorem 6.this implies that every coordinate
gsystem £ for w satisfies I,ees,V. We want to
show that 7 is desarguesian, l.e. (c,A)-desar-
guesian for any ¢ and any A. Take an arbitrary
point-line pair (c,A). If c€A, choose 0,e,X,y
such that e=y and A=xy. If e¢f4, choose o, e,

X, y such that c=x and A=oy. Then by theorem

7 (a) and (b} we conclude that w 1is (c,A)-des-

arguesian., End of proof of theorem 8.

If the reader's esthetic sense 1s bothered
by the "not necessarily commtative" in the
statement of theorem 8 (b), he should not des-
pair. An algebraic theorem of Wedderburn's (ste A rp: 7(’77)
ghows that in the finite case, IX 1s a conse-
quence of II,...,V. It follows that @ |
Theorem 8 (b!) : Assume w is finite. Then m

is desarguesian if and only if ¢ 1s a field.
Moreover, in the general case, ¢ being
a fleld corresponds to a geometric condition

that is stronger than Desargues'! condltlon,
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but no less pleasant ¢ Pappus! condition.

Pappus! condition : Consider two lines L and

It and six points a, b, ¢, a', b?¥, ct, distinet
from LL!' and from each other, such that a, b,

¢ 6L and a', bt, c! €L', Then (ab') (atb),
(act)}(ate) and (be?) (b'e) are collinear. (See
fig. 17).

Theorem 8 (¢) : w satisfies Pappus' condition

if and only if £ is a field. (For proof see
A ppo 78=82. For more about Pappus' condition,
see D ppe 157-161).






(IV) THE IENZ-BARLOTTI CLASSIFICATION
The classification, discovered by Lenz

and refined by Barlottl in 1957, distinguishes
the possible types of projective planes by des=-
cribing thelr transitivities. We will prove some
preliminary results before getting to the class-
ification itself. The proof of the classifica-
tion requires showing that certain transitivities
imply certain other ones. For example theorem
5 and lemma 3 give us ways to do this. Theorems
9 through 12 below will have the same purpose.
(Throughout this section we will mainly follow B).

Theorem 9 : If w is (c,A)=-transitive and (c',A)=-
transitive, then 1t 1s (cec',A)~transitive.

(See D p. 123).,

Proof : Case 1 : Assume ¢ or c¢' ZA. Consider
t€ce's We must show that w is (t,A)-transitive.
Take X, y such that téxy, x¥t, y#t, xgA, y#A.

We must show : there exists 66A(t,A} such that
0(x)=y. Define z=(cx)(c'y). There exists a€A(c,A)
and a'6A(c',A) such that a(x)=z and a'(z)=y.

(See fig. 18). Define 6=a'oa. © is a collineation.
Moreover it fixes all the points of A. So it
has an axis and therefore a unique center,

If we can show that in all possible cases ¢

13 the center, we're done. Note that 6(t)=a'(a(t))=t.
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If tgA, this establishes that t is the center.
If t€A, (see fige. 19), let us show this is
st11l true. Since 6(xy)=xy we conclude that
the center of 6 is on xy. Call the center u.
We have 6(u)=at(a(u))=u. Also : a(u)=(cu)(tz),
and a!(a(u))=(c'a(u))(xy). We conclude that
u€c'a(u}. This is only possible if c=c', which

would contradict our hypothesis, or if u=a(u}=t,

which 1s what we wanted to show.

There are two ways the above proof could
fail., One 1s if x, y happen to be on cc', In
this case, pick I#cc', and bEA, b@ec'. Let
x1=L{xb), and y'=L(yb). Construct 6 as above,
using x!' and y' instead of x and y. The © thus
obtdned will still take x to y. (See fig. 20).

The problem arises if z€A., Then a and a!
do not exist. The solution is to take we€xy
such that w#x, w#y, w#¥t, and w#z. Then use
the above proof to construct 6€A(t,A) such
that 6(x}=w and 6'€A(t,A) such that 6'(w)=y.
The composition 6!'00 1s the collineation we
neéd. The cholce of w assumes that there are
more than four points on xy. The theorem, how=-
ever, 1s true in general, because it is a well-
known result that all planes with less than
ten points on a line are desarguesian, (See

D p. 144).
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Case 2 : cBA and c'€A, (For proof, see A p.57).

Theorem 10 : If a, b, ¢ are three non collinear

points and ™ is (byac)=-transitive, and if in addi-
tion one of the following conditions holds, then
7 138 desarguesian.

a) n 1s (c,ac)- and (c,ab)-transitive,

b) v is (c,A)~transitive, where A is such that
a€A, bPA, cfA. (See fig. 21. See B p. 216).
Proof : First notice that (a) ==> (b). Indeed,
by the dusl to theorem 9, (c,ac)- and (c,ab)-
transitivity imply (c,a)-tansitivity, which
implies condition (b). So it will be enough to
show the theorem holds for (b). (For the follo-
wing, see G p. 62). Let us choose o, e, x, ¥,

no three of which are collinear, such that x=b,
y=c, o=a, and efA, e#(bc)A, Then ac=oy and A=oce.
So the plane is (x,0y)- and (y,o0e)~transitive,
so that £ is a (not necessarily commtative)
field, (theorem 7 (g)}, and hence w is desar-
guesian (theorem 8 (b)), End of proof of theo-
rem 10,

Corollary : If  is (a,A}- and (b,B)-transitive,
with b€A, a@gA, a@B, bgB, n is desarguesian.
Proof : This 1s just another wording of theorem

10 (b).
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Theorem 11 : If 7 is (a,A)- and (b,B)-transitive,

with a€A, afgB, bgA, b¢gB, m is desarguesian.
Proof : (See B p. 216). Define n=AB, m=(ab)B.
Consider a€A(a,A) such that a(b)=m. Let a(B)=M,
Let us distinguish two cases. Case 1 : bEM (see
fig 22). By theorem 5, v is (m,M}-transitive.
Since it is also (b, nm)-transitive by hypothesis
we conclude, by theorem 10 (b} that v is desar-
guesian, Case 2 : bEM. (See fig, 23). Again,

by theorem 5, w is (m,M)transitive. Once more,
by theorem! 5, w is (B(a),B(A))-transitive, for
all BEA(b,B). In particular, m is (mymn)-transi-
tive. By theorem 10 (a) ¥ is desarguesian. End
of proof of theorem 1l.

Theorem 12 ¢ If m is (a,b)-transitive, it is

(b,a)-transitive. (See D p.123, G p. 51).
Proof : This 1s a strong result for which there
seems to be no purely geometrical proof. Assume
n is (a,b)-transitive. Pick o, e, X, ¥y no three
of which are collinear, such that x=a and y=b,
Construct £. By theorem 7 (8), ¢ satisfies
Ise00,IVe Now consider the collineation a such
that a(x)=y, al((a,b))=(b,2), and a((m))=(m"1)
for m#0. In the proof of theorem 8 (a) we showed
that a is a collineation. The proof is valid
here, because III => VII and VIIT and VI,



and the proof did not use V. We conclude that

£' constructed from o!', e'!', x', y', where
o'=q(o)=0, e'=ale)=e, x'=¢(x)=y, and y'=a(y)=x,
is isomorphic to ¢, and hence satlsfies I:°°°:E1'
By theorem 7 (e), 7 is (b,a)-transitive. End of
proof of theorem 12,

Corollary : If w is (a,b)-transitive, with a¥b, it
is (ab,ab)-transitive.,

Proof : 1 is in particular (a,ab)-transitive. By
theorem 12, it is (b,a)-tranditive. In particu-~
lar, it is (b,ab)-transitive. By theorem 9, it

is (ab,ab)-transitive. End of proof of corollary.

We are now fully equlpped to undertake the
proof of theorem 13 : the Lenz-Barlottl classi-
fication for projective planes. (Note that F
will not denote a line, and ¢ will not denote
a collineation.)

Theorem 13 : Let FP={(x,X)|w is (x,X)-transitivel.

Then F is of one of the following types 3
I.1) F=¢.

2) F={(a,A}} where agA.

3) F={(a,A),(b,B)} where a€B, bEA, agA, bEB.

4) F={(a,A),(by,B),(c,C)} where a=BC, b=AC, c=AB,

a, b, ¢ distinct.

5) F={(x,po(x))|x€L} where p¢L, and ¢ is a

permutation of L such that x#¢(x) for all x and
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pog=1.,
6) FP={(x,¢(x))|x#p, x6L} where p€L, and ¢ is
a bijection from IL-{p} to {X|pe€X}-{L}.
7) F={(p,L)} U {(x,p¢(x))|x6L} where p, L, ¢
are as in (I.5).
8) F={(x,¢(x})|x6n} where ¢ 1s a map from
7 to m¢ such that xf¢(x) for all x, and if
x6o(y) then yeo(x).
IT.1) F={(a,A)} where aGA.
2) F={(a,A), (b,B}} where a=AB, bEA, af¥b, A#B.
3) P={(p,L)} U{(x,9(x))|x#p, x€L} where p,
L, v are as in (I.6).
IIT.1) FP={(x,px) |x6L} where p#L.

2) FP={(p,L)} U{(x,px) |x€L} where pgL.
IVa.l) FP={(x,A)|x€A} for some A.

2) F={(x,A) |x€A} U (b,Y) |beY}u{(b,Z) |a€Z}
where a#b, a€A, bEA,

3) P={(x,X)|x€A, ¢(x)€X} where ¢ is a per-
mutation of the points of A such that ¢(x)#x
for all x, and ¢o¢=i,

IVb, (1), (2) and (3) are respectively dual to
Iva, (1), (2) and (3).

Vel) F={(x,A)|xeA} JH{(b,Y)|bEY} where DbEA.
VIa,1l) F={(x,X)|x€A, x€X} for some A,

VIb.1l} i1s the dual of VIa.l).

VII.1) P={(x,X)|x€X} (v is a Moufang plane).

2) P={(x,X)|all x, X} (m is desarguesisn),



(See fig. 24. See B pp. 214-215).

Note : Lenz investigated this problem in 1954
only for (x,X)-transitivity in the case x€X.

He found nine types of planes (see B p.213), that
he numbered I, II, III, IVa, IVb, V, VIa, VIDb
and VII., Barlotti studied the general case and
found the above 24 types that he divided in nine
classes, following Lenz's notation. It has been
shown since then that planes of several Lenz-Bar-
lotti types do not exist (see below). Dembowski
defined (c,A)-transitivity for a subgroup of A
and , following Barlotti's approach he classifled

these subgroups in 53 types (see D p.124-125).

Begimning of the proof : The method of the proof

is as follows (see B p. 217) : consider any plane
. Let Fw)={(x,X} |7 is (x,X)-transitive}. Show
that if F(nw) contains F (one of the figures listed
in the theorem),and an additional point-line pair
(q,Q), then F(w} contains F', where F! is a figure
listed below F in the theorem. (In fact, there
exists an F' such that F(w)=F', But for our proof,
it will be enough to find an F!'c¥#., Indeéed, if

F1#" (v), then F(v) will be discussed again later
in the proof, when the case "F(n) contains F!

and an additional pair (q,Q)" 1s studied.)

Case 1 :' F is of type (I.1). Two subcases :
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q?Q and q€Q. They correspond respectively to F!?
of types (I.2) and (II.1).
Case 2 : F is of type (I.2).
Subcase : q#a, qFA, qfQ, agQ, AAQ, AQfag. (See
fige 25). Then by theorem 5, using (a,A) and
(a,Q) collineations, we see that all the points
of aq and all the lines through AQ will belong to
point-line pairs that are elements of F(w). If
one of these lines (or points) belongs to more
than one pair, i.e. if F(w) contains (x,X) and
(x,X!), wlith X#X', then by the dual of theorem
9, the ﬁlane is (x,4Q)-transitive. By the corolla-
ry to theorem 12, we obtain (x(AQ),x(AQ))~-transi-
tivity, and F(w)contains F! of the type (IVa.l),
The dual reasoning in the case where F(w) contains
(x,X) and (x',X), with x#x! and x, x' €aq, AQEX,
yields the result that F(w) contains F'! of the
type (IVb,1).

If all the lines X through AQ and points x
on agq belong to one and only one pair in F(w),
define ¢ to be the permutation of L which asso-
ciates X(aq) to x, when x and X are in the same
pair. Define y=X(aq)e If xZ(AQ)o(y), by the corol~
lary to theorem 10, the plane 1s desaguesian
(i.e. F(w) contains F! of type WII.2)). If x€(AQ)e¢(y)
we find ourselves in the situation where F(mw)

contains F! of Lenz-Barlotti type (I.5) with ag
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playing the role of L and AQ playing the role of
De
Other subcases : If q€Q, we get F' of type (II.1l).

If q#Q, aéQ, q@A, then by the corollary to
theorem 10, the plane is desarguesian. If qfl,
afl, q€A, we get the same result by switching g
and & and Q and A, (See fig. 21).

If qgQ, afQ, Q€A, we have F' of the type (I.3).
(See fige 24).

If qfQ, qfA, a=q, ™ is (ay,AQ)-transitive by
the dual of theorem 12, and by its corollary we
obtain (a(AQ),a(AQ))-transitivity, and F' of type
(Iva.1l). The subcase q@R, a@d, Q=A is the dual
of the preceding one.

Finally the last subcase 1is q#Q, agQ, qZA,
and QA€qa. (See fig. 26). Then by theorem 5, m
is (x,X)-transitive, where x is any point on ag,
and X 1s an appropriate line, different for each
®, through AQ and other than agq. We obtain F' of
type (I.6).

Cage 3 ¢ F is of type (I.3). We can avoid studying
the numerous subcases by the followlng gimmick :
Note that type (I.3) includes type (I.2) (see fige
24), Adjoin (q,Q) to type (I.2). This was studied
in case 2. Then adjoin (by,B). If adjoining (q,Q)
yielded a figure F' that was after (I.3) in the
theorem, we're done. The only other case is q#Q,

a >






afQ, qfA. By switching the roles of (a,A) and
(v,B) we get bEQ and q€B. So the only new casge
we have to study is q=AB and Q=eb. This is pre=-

clsely a figure of type (I.4).

The proof contlinues in this fashion, through
21 more cases, each one more or less complicated
and more or less similar to cases 1, 2, 3. (For
the remainder of the proof, see B pp.219-226.)
Barlottl proved his theorem in 1957. Since then,
many of the types of planes he listed were either
constructed, or shown to be lmpossible. Several
questions are still unanswered. The table on the
following page represents the present state of
knowledge on the question. We will comment on
the non-existence of some planes in the finite
case., In section(V) we will construct a mumber

of finite non-desarguesian planes.

Theorem 14%a)There are no projective planes of
Lenz-Barlotti type(VI.1l).

(p) There are no finite projective planes of type
(VII.1).

Proof S?Consider a plane m of type (VIb.1l). Then
" is (X,X)-transitive for all X such that a€X,
Pick two distinct lines L, L' through a. Choose

0, €, X, ¥ such that y=a, x€L, o€L', efL, efL!?,
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Lenz-Barlotti Plane exists Plane exists

type (finite case) (infinite case)

I.1 yes yos
I.2 ? yes
I.3 ? yes
T.4 ' ? yes
I.5 A no no
I.6 no ?
I.7 . no no
1.8 no no
II.1 yes yes
II.2 ? yes
IT.3 no ’ no
I1T.1 . ? yes
ITI.2 no yes -
IVa.l yes yes
IVa.2 yes | yes
IVa.3 ves no
Vol yes yes
VIa.l no no
VII.1 no yes
VII.2 yes yes

For additional information about results on

thils table, see D p.l26.



efox. Construct the coordinate system £ corres-

ponding to o, e, X, y. By theorem 7 (f), £ satis-

fies I, II, IV, V, and VII, which Implies that

¢ satisfiles VI. (See E, pp.369-370, D p. 130),

By theorem 8 (a), m is a Moufang plane, which

contradicts our hypothesis that m 1s of type (VIb.l).
(b)Consider a finite plane ™ of type (VII.1).

By theorem 8 (a), ¢ is an alternative field. But

a finite alternative field is a fleld (see D p.l130-

131), and hence 7 is desarguesian, contradicting

the hypothesis that it is of type (VII.1l). This

ends the proof of theorem 14. Notice that the

proof was purely algebraic, based on theorem 7,

The proof of non-exlstence for finite planes
of types (I.5), (I.6), (I.7), (I.8), (II.3) and
(I1I.2), while requiring sophisticated algebrailc
results, have a significant geometric component.,
A1l of them have been developped between 1958
and 1966 (see D pp. 197-207). We will present the
proof of non-existence,for types (I.5) and (I.7),
following D ppe 197-199 and F pp. 508-5I0.

Theorem 15 : There are no projective planes of

Lenz-Barlotti types (I.5) and (I.7).

TLemma 4 : Let a€A(a,A} and BEA(b,B), such that
aoa=pof=1, a6B, bEA, A#B, ayb. Then 6=BoafA(AB,ab)
and 606=1, (See D p.l20}.
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Proof : Let p€A. Since a(p)=p, we have 6(p)=8(p).

Similarly if q€B, 6(q)=a(q). Now take xfab, xfA,

x@B. Say (bx)B=q and (ax)A=p. We must have :
0(x}=(ba(q)) (aB(p)}). (See fig.27).

It follows that 6o6=1, Now consider (ab)(x8(x)).

It 1s clearly fixed by 6. Since 1t is not a or

b, we conclude that ab 1s the axis. Since ABgZab

is also fixed by ©, it must be the center of €.

End of proof of lemma 4.

Proof of theorem : Suppose ™ 1s of type (I.5) or

(I.7). Then for some point-line pair (p,L) we
have : (pgl)
a) mis (x,pp(x))-transitive for every x€L, where
¢ 1s a fixed point free permutation of L with ¢op=1.
b} m is not (x,X)=-transitive for any other point-
line pair (x,X) except perhaps for x=p and X=L.
Let A be the permutation group induced by 4 on L.
Each element a€A is such that a€d(x,pe(x)) or
a€A(p,L}. Indeed, say afl, afbd(x,po(x)), afh(p,L).
Then a(p)=p'#p and a(L)=L'#L. Therefore by btheorem
5 the plane is (p',L!')-transitive, Our hypothesis
implies that we must have p'€L, p€L', and ¢(p')=LL!,
It follows by theorem 5 that 7 is (a(x),p'a(e(x)-
transitive for all x€L, which contradicts the hypo-
thesis, | |

To each a€A corresponds a€ld, where g(y)=a(y)

for y€L., This makes sense because elements of
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A(x,pp(x)) and A(p,L) take points. of L to points
of L. Then ¢og=go¢ because the image of the center
and axis of an element of A by any collineation a
will be the center and axis of some element of 4,
So ¢ commutes wlth any a€A. Moreover, given any

two points a and b on L, there exists a permutation
B€A such that B(a)=b, since there exists BEA such
that a(a)=b.

Consider a€A such that g(y)=¢(y). We rust have
ala(y))=ale(y))=¢(a(y))=¢{o(y))=y. So g is of order
two. Assume g leaves x and ¢(x) fixed, 1.e. a€A(x,pe(x)
Wé can find a'€4{(¢(x),px) with the same property
a'(y}=¢(y) for ye€L. Lemma 4 implies that goa'=i.

So g=a'. So g€A such that a(y)=¢(y) is unique for
each choice of {x, ¢(x)}. Let us call this unique
element of A 8[x]. 8[x] fixes x and ¢(x) and inter-
changes y and ¢(y) for ye€L, y#x, y#o(x).

Now introduce coordinates in w, with o=p
and x, y €L such that y=¢(x). Then we have, by
theorem 7 (b): £ is linear and £¢° is isomorphic
to all A(x,pe(x)). Hence £° contains precisely
one element of order two, e, which 1s In the center :
xe=ex for all x8¢. The group A(y,ox) consists of
the mappings (x,y) —>(x,yt), t€2°. The fact that
these are collineatlons implies right distributi-
vity. (This follows from an argument similar to
the one in the proof of theorem 7). T -



The only collineation of order two in A(y,ox)
is 8[yls (x,3)=—>(x,y8), mapping (m) into (me)=(em).
Hence, if m#0, ¢((m))=(em)=(me). Now consider
8((e)]. It has center (g) and axis y=x. As x and
vy are interchanged by 6[(e)]l, it follows that :

ol (e)1((x,3))=(y,x), and

6[(e) ) ([y=x+bl)=[y=x+(~b) ] where b+(-b)=0.
Moreover, (c,c+b) 1s sent to (c+b,c), so that

(c+b,c)ely=x+(-b}]. So :

(c+b)+(-b)=c, the right inversive property.
The fact that (m,1l) goes to (l,m) implies that lines
through (m) where m#0, go into lines through (m-l).
But 6[(e)] must interchange (m)and ¢((m))=(me).

1 ang _r_qg=g for m#l, e, O.

Hence me=m"
It follows from the right distributive law
that (-l)a=-g, that is that a+(-1l)a=0 for all a€?l.
Moreover (-g+a)+(-a)=-a and hence -a+a=0. In par-
ticular =-e+e=0, Bﬁt :
0=-g+(-1) (~g)=ng+(-1) Pe=-g+e®=-g+l (unless e=-1).
This implies that e=l. But e is of multiplicative
order two, so we have a contradiction unless e=-1l.
Algebraists tell us that the only ¢°.satis-
fying all these conditions are the cyclic groups
of order 2 or 4 and the gquaternion group of order
8e (See D p, 199). So ¢ has 3, 5 or 9 elements.
But every projective plane of order < 8 i1s desar-

guesian (see D p. 144. The order.of a projective
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plane is the number of elements of £)s; So £° has

to be the quaternion group of order 8. Pickert
showed that there are exaetly two planes coordina-
tlzed by such an £, and he found them to be of
Lenz-Barlottl types (IVa.3) and (IVb.3) respectively,
not (I.5) or (I.7). (Seeﬁé p.199 for reference).

This completes the proof of theorem 15 : there are
no planes of Lenz-Barlottl type (I.5) or (I.7).
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(V) SOME FINITE NON-DESARGUESIAN PLANES
Many constructions of such planes are known.
All are outlined in D pp. 219-251. After some intro-

ductory remarks, we will describe several of them,

Planes of type (IVa) feature (A,A)-transitivity
but no (b,b)-transitivity. By theorem 7 it follows
that they are coordinatized by quasifields which
are not semifields. There 1s exactly one plane
of type (IVa.3), that was mentioned at the end of
the proof of theorem 15. Planes of type (IVa,.2)
are coordinatized by planar nearfields. See D
pp. 229-232, H pp. 158-159. Planes of type (IVa.l)
do not have (a,b)-transitivity for any a, b. It
follows by theorem 7 that they are coordinatigzed
by quasifields that are not nearfields., See D
pPp.232-236, A pp.88-92. Planes of type (IV.Db)
are dual to the planes of type (IVa).

Planes of type (V.1l) are (A,A)- and (b,b)-
transitive. By theorem 7 it follows that they
are coordinatized by semifields. See D ppe. 236~
245, A pp.86-88.

Planes of type (I.1) and (II.1l) have no (A,A)-
or (b,b)-transitivities. Therefore they cannot be
coordinatized by a quasifieldizﬁ'ppa 246-251,

C pp. 371-381, 385-387.

Here we will limit ourselves to presenting



a few methods of construction, ylelding planes
of each of the types (IVa.2), (V.1), (IVa.l) and
(Iol) °

One method 1s to construct an algebra, and
to define the plane in terms of 1ts coordinate sys-
tems We will outline one such construction follo-
wing H pl5&8.

Let ¢'={a+bj} where a, b are elements of the
field of three elements. Addition is defined in
the nabtural way., Multiplication is defined using
the relation °=2. It 1s easy to check that 2!
is a field wlth nine elements. Now define £ as
follows. £=£' as a set. Addition is the same as

in 2', but multiplication 1is according to the ruls

... Xy 1f y is a square in &',
xy={ g
Xy if not.

Define a ternary operation in ¢ as follows ¢
Xe.mob=xm+b.

It is not difficult to verify that with these ope-
and st @ semifield |
rations ¢ is a planar nearfiel@Q We saw in section
(III) how a projective plane can be constructed
from a ternary fleld ¢, By theorem 7, the one
obtained from this ¢ will be of Lenz-Barlotti type

(IVS..Q) °

A class of planes of type (V.1l) can be cons-
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tructed similarly, after constructing a semi-field.
(See A pp.86-88). Consider the fileld &' of order
pn where p is a orime and n>2 (here p and n are
not points but integers). Consider £¢=£%y&é' with
the followlng operations :

(x,x") + (g, 3" ) =(zx+y,x'+3")

(x,2") (x,x')=(xy+ex Py, xPy1+x ')
where e€£!' is fixed. It can be shown that if g
is not a (p+l)st power in &', then £ is a semi-
field and not & field. The proof, unlike that
of the previous example, 1s not a mere verification,
but involves the use of the algebraic result that

£° is cyclic and the fundamental theorem of alge-

bra.

We will now describe an altogether different
approach (see A ppe 88-91)., Consider w! the plane
coordinatized by the field of nine elements, £!'.
7t is of course desarguesian, We wlll construct
a non-desarguesian plane consisting of the same
points, but different lines. Several of the lines
of ® actually will be lines of w'. Specifically
the line xy and lines with equation y=x.m¢b, where
m#0, 1, 2. This gilves us 55 lines of w. The rest
of the lines wi1ll be defined as follows. For any
x#0, ¥, z in &' let x=aj+b where &, b €{0, 1, 2}
and 1%=2. Define p(x)=y if a=0, p(x)=(ba™l) ir
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a7#0. Then define the set consisting of p(x} and
all points of the form : (xa+ty,xa'+z) where a,
a' are in {0, 1, 2}, to be a line of m, called
L(x,y,2) o We must prove this makes ™ into a pro-
jeetive plane,

Consider the map ¢ that takes (x,y)=(a+bj,c+di)
into ¢((x,y))=(a+cj,b+dj), where 2, b, ¢, 4, are
in {0, 1, 2}. Note that goe=1. It is not difficult
to check that ¢(L(x,y,z)) is a line of m' with
equation y=xm+b where mé{0, 1, 2}, and ¢ 1s a bi-
jection. It follows that we defined the right
number of lines L(x,y,z). The axioms PI, PII, PIII
are easlly proved, using the bljection ¢,

A legitimate question is : how do we know
7 1s not isomorphic to ! ? This can be shown
by proving that the plane is not (y,L(j,0,0))-
desargueslan. (Consider the triangles (j+1).
(1,3+1) {23+1,0) and (J) (§,1)(1,21)).

On page 92, A claim that m can be coordlina-
tized by & quasifield that 1s not a nearfield or
a semifield. This makes it a plane of type (IVa.l).

We will now construct a plane of type (I.1l),
known as a Hughes plane, (named after Hughes who
discovered 1t in 1957). We will basically follow
C pp. 379-381 and 385-387. However, since Hughes
uses rather unusual definitions, our presentation
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will be somewhat different.
Definition : A (left) nearfield is an algebraic

system satisfying II, III, and V. (See section
(III)).

: ngsenhaus has shown that for any odd prime
p and any positive integer ny, there is a nearfield

20 hich is not a fleld, but whose cen-

of order p
ter is a fileld of order pn. Call such a nearfield
N and its center F. (From here on lower case letters
do not necessarily denobe polnts, and capitals
do not necessarily denote lines.)
Let q=p~P4p™+1, Let V=NxNxN, and V'=FxFxF.
Then V 1s a left vector space over N and V! is
a left vector space over F. Let ¢ be a nén-singu-
lar linear transformation such that

a) o(viy=y? .

b) If veV, ¢%(vi=kv for some k6N, k#O.

¢} If v'ev!, v'#(0,0,0), and wm(v')ﬁkv' where
k6F, k#0, then m=0(mod q).

.For proof of the existenée of such é.w, see referen=
. ce In C p. 380.

The points of % will be the elements of V,
except (0,0,0), where (x,y,2) and (kx,ky,kz) are
‘identified. The lines are ¢ (L(t}), where 5N,
with t=1 or t@F. ©<(L(t)) and ¢"(L(t)) are iden-
tified if and only if k:m(mod q). We have (x,y,z)EL(t)

if and only if x-y+zt=0. w contains p4n+p2n+l points
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and the same number of lines, with pP+1 points

on each line. By simple computations we can show
that m satisflies the axioms for a projective plane.
7 is called a Hughes plane and it has a desarguesian
subplane w' consisting exactly of the points (x,y,z)
for which x, ¥y, z are in F, and the 1lines ¢ (L(I)).
Note that a 1line ¢m(L(t)) can be represented by an
equation : xatyb+zc+(xal+yb'+zc!)t=0, where a,

by, ¢, a'y, b', ¢' are In F.

Now let us coordinatize 7 in the usual fashion.
Tet x=(1,0,0), y=(0,1,0), 0=(0,0,1) and e=(1,1,1).
Then the lines ox, oy, Xy, oe are lines of the form
wk(L(l)), and in particular they have equations
respectively y=0, x=0, z=0 and.x=y. Thereldre. the
0ld coordinates of (oe) (xy)=(1).are (1,1,0). We
can see that all the lines through (1) are of the
form x-y+zt=0, for t€N.

The coordinates of the points of oe are of the
form (v,v,1) in the old system, where v€N. Rename
them (y,y). What are the new coordinates of points
of ox ? Consider the line through y=(0,1,0) and
(u,0,1), a point of ox. Where does it intersect

=y ? If 1t has equation :

xa+ybtze+ (xal+ybl+ze!) t=0,
then we have : b+b't=0 and ua+c+(uat+c?) t=0.

Is the point (u,u,1) on the line ? We consider
two cases. If t=1, then clearly yes. If t¢F, since
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b and b!' are in F, we must have b=b'=0. In this
case again (ﬁ,u,l)=(g,_1_1_) is on the line. So (u,0,1)
can be renamed (u,0). Similarly for points of oy
(0,u,1)=(0,u}.

What are the old coordinates of (u,v} ? (u,¥)
is the intersection of y(u,0) and x(0,v). Say the
equations of these lines are fespectively :

xa+yb+ze+ (xal+ybt+ze ') t=0,

xd +ye+zf+(xdt+yet+af!)s=0,

Then we have @

b+b ' t=ua+te+ (nat+e ) t=0,

d+d!s=ve+f+(ve 1+£1)s=0.

As before, elther t=1 and b+b'=0 or t@#F and b=b'=0.
Similarly, either s=1 and d+d'=0 op sgF and d=d'=0,
This gives us four cases, It 1s easy to check that
in all four cases (u,v,1l) i1s on both lines. We con-
clude (u,v)=(u,vy;1)e

(m) is on (l,m)o and xy. xy is z=0. Say (i,m}o
has equation : xatyb+ze+(xal+ybl+gze!) t=0, then we
have @ c+c't=a+mb+c+(af+mb'+c')t=O. In both cases
(t71 and +¢F) it is clear that (1,m,0) is on this
line, We conclude :

Lemma 5 : (u,v) is (u,v,1) 3 (m) 1s (1,m,0) ; (oo) is
(0,1,0). |

Now we will investigate £, the ternary field

defined as in seetion (III) from the operation

Y=u.mob.



Lemma 6 : Xe.lov=xtv, X.mo0=xm.

Proof : The line through (1) and (0,v) is the 1line

y=x.lov. We must show that the point (x,x+v) is on
it. Say 1ts equation is x-y+zt=0, then clearly t=v,
and (x,x+v,1) 1s on it.

The line through (m) and o has equation y=x.moQ.
We must show (x,xm)is on the line. Well if its equa-
tion in the o0ld system was @

xa+yb+ze+ (xat+ybi+zc!) t=0,
we have : c+elt=atmb+(at+mb')t=0. In both cases
(t=1 and t¢F) we see that (x,xm,1l) 1is on the line.
End of proof of lemma 6.
Lemma 7 ¢ ¢ is not linear.
Proof : Lemma 6 showed that ¢ is isomorphic to N.
Therefore 1t satlsfles II, III, and V of section
(III). Assume ¢ is linear (satisfies I). Then
7 1s coordinatized by a planr nearflield. Hence
by theorem 7, there exlsts a polnt p€m such that
m is (p,p)-transitive. But ¢ is a collineation of
order q=p2n+pn+1 which leaves no point fixed.
So the plane is (¢(p),¢(p))- and (wg(p),wz(p))—
transitive (theorem 5). Since q>3, wz(p)#b. So
by the dual of the corollary to lemma 3, this
implies that thenplane is Moufang, and since 1t is
finite it must be desarguesian. So £ and hence N

1s a fleld, a contradiction. End of proof of lemma7.
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Theorem 16 : A Hughes plane 1s of Lenz-Barlotti

type (I.1l).

Pr6of : We do not have the necessary machinery

to prove this theorem. (See D p.248). It is clear
however that w is not (A;A)- or (b,b)-transitive
for any line A or point b. So cannot‘be coor-
dinatized by a quasifield, and therefor must be of
Lenz-Barlotti type (I.1l) or (II.1).

The Hughes planes are the "least" desarguesian
possible., It is amusing to note, however, thét they,
like all finite projective planescontain many
Desargues configurations such as the one of fige. 1.

(See D p. 145),
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